Representation for the W -weighted Drazin inverse of linear operators

نویسندگان

  • Xiaoji Liu
  • Jin Zhong
  • Yaoming Yu
چکیده

In this paper we study the W -weighted Drazin inverse of the bounded linear operators between Banach spaces and its representation theorem. Based on this representation, utilizing the spectral theory of Banach space operators, we derive an approximating expression of the W -weighted Drazin inverse and an error bound. Also, a perturbation theorem for the W -weighted Drazin inverse is uniformly obtained from the representation theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Condition number of the W-weighted Drazin inverse

In this paper we get the explicit condition number formulas for the W–weighted Drazin inverse of a rectangular matrix using the Schur decomposition and the spectral norm. We characterize the spectral norm and the Frobenius norm of the relative condition number of the W– weighted Drazin inverse, and the level-2 condition number of the W– weighted Drazin inverse. The sensitivity for the W–weighte...

متن کامل

The representation and approximation of the Drazin inverse of a linear operator in Hilbert space

We present a unified representation theorem for the Drazin inverse of linear operators in Hilbert space and a general error bound. Five specific expressions, computational procedures, and their error bounds for the Drazin inverse are uniformly derived from the unified representation theorem. 2002 Elsevier Science Inc. All rights reserved.

متن کامل

Singular constrained linear systems

In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...

متن کامل

Estimation of a Condition Number Related to the Weighted Drazin Inverse

In this paper we get the formula for the condition number of the W -weighted Drazin inverse solution of a linear system WAWx = b, where A is a bounded linear operator between Hilbert spaces X and Y , W is a bounded linear operator between Hilbert spaces Y and X, x is an unknown vector in the range of (AW ) and b is a vector in the range of (WA). AMS Mathematics Subject Classification (2000): 47...

متن کامل

Ela Characterization of the W-weighted Drazin Inverse over the Quaternion Skew Field with Applications

If k = 1, then X is called the group inverse of A, and is denoted by X = Ag. The Drazin inverse is very useful in various applications (see, e.g. [1]–[4]; applications in singular differential and difference equations, Markov chains and iterative methods). In 1980, Cline and Greville [5] extended the Drazin inverse of square matrix to rectangular matrix, which can be generalized to the quaterni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010